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Scope

« What do we know about the biology of DNA
profiles?
« How can this inform interpretation models?

« How does knowing expected peak heights help?
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1. Heterozygote balance
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Heterozygote balance

« Hb is used to:
- Inform number of contributors to a profile

- Restrict possible genotype combinations in a mixed
DNA profile

 Important to assess bounds on Hb

 Hb rules are based on the expected height
variance between a pair of alleles in a
heterozygote

« Traditionally, applied across a profile
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Definition of heterozygote balance

 Two definitions of heterozygote balance or peak

height ratio:
Hbl _ OHMW Hb2 — C():)smaller
OLMW larger

« Where O is observed peak height

* Hb, has the highest information content because
It maintains peak order

 Hb, may be obtained from Hb, but not vice versa
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Hb versus average peak height
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Conclusion

« The mean of heterozygote balance is unaffected
by average peak height

* The variance about this mean is much lower at
high average peak heights

« This is true over multiple kits and PCR cycle
numbers
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Identifiler 28 cycles
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NGM SElect 29 cycles
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SGMPlus 34 cycles
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2. Stutter ratios

« Traditionally we apply a threshold at analysis to
remove stutter
- Locus specific
- Kit specific
 What if your minor POI was approximately same
RFU as stutter?
* Isremoving stutter peaks conservative?

 What if a stutter peak was actually allelic and
excluded your POI?
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Stutter ratios

e Stutter ratios are actually allele specific
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THO1 stutter
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Forensic Science International: Genetics

GENETICS

Volume 6, Issue 1, January 2012, Pages 5863

Characterising stutter in forensic STR multiplexes
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* Department of Chemistry, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
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THOL1 repeat structure

Common THOL1 allele sequences
Repeat structure Allele LUS
[AATG]; 6 6
[AATG], 7 7
[AATG], 8 8
[AATGJo 9 9
[AATG],ATG[AATG]; 9.3 6

Longest uninterrupted stretch of basic repeat motifs is a good
predictor of stutter ratio
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THO1 Stutter ratio versus LUS
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Stutter model

SR=mLUS+_C

 Values for slope and intercept can be determined for
each marker using regression
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Stutter effect on profile slope

 Longer alleles stutter more.

* Is this the cause of observed general decreases
In profile slope?
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Stutter effect on profile slope

« Taking into account stutter by calculating total allelic
product there’s still a small but significant negative
slope

* Likely to be simply due to the reduced amplification
efficiency of the larger allele at a heterozygote locus
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3. Profile slopes
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Degradation slopes
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Degradation curve

« Empirical data has shown that for larger multiplexes a
DNA slope is best described by an exponential curve
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slope a, decreasing with molecular weight
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4. Locus specific amplification

 Observation that some loci amplify more
efficiently than others

 Results in varying peak heights off the general
trend

e Locus offset at each locus allows for this
variation
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Locus specific amplification
example
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A biological model — an example

Forensic Science International: Genetics
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Developing allelic and stutter peak height models for a continuous
method of DNA interpretation
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A biological model —an example

A model that calculates the expected heights of
allelic an stutter peaks

 Takes into account:
- Stutter
- Degradation
- Locus effects

* Informed by empirical data

e For use within a continuous method of DNA
Interpretation

© ESR 2013 m



Total allelic product Allele
v

* ‘True’ (but unknown) amount of template

DNA

 PCR product: allele plus stutter peak
hEightS Stutter

 Model template DNA based on our —__
observations: — e —

- Height of peaks from a single contributor is
approximately constant across loci

- Generally trends downwards with increasing
molecular weight

- Slope may vary between contributors (i.e.
degrade at different rates)

- Individual loci may still be above or below the
trend
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Modelling total allelic product

« Mass of an allele at alocus is modelled by the
mass parameters:
- Slope d, (degradation) and intercept t, (template)

 Mass decreases with increasing molecular weight
of an allele at alocus (m')

« Locus offset at each locus Al (locus specific
amplification efficiency)

(Al ( —d,xm,
T, =At X_ XxE€

Where X', = dose, the count of allele a at locus | for contributor n:

Heterozygote =1
Bl
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Peak height estimation

 The total allelic product from an allele is divided into
stutter and allelic peak heights

 The height of the stutter and allelic peaks formed
from allele a contributor n are calculated by:

Allele Stutter
¢ ¢
Ef _ Tal;.] Eg _ SRa (Tan )
1+ SR @ 14 8R!
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Test of the model

99 single source DNA profiles
« Applied Biosystems’ Identifiler™ multiplex.
« 50 rfu analysis threshold

 Mass parameters estimated by MLE
« Total allelic product calculated

« Expected height of all allele and stutter peaks
calculated
- Applying the LUS model for stutter ratio
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Variance of stutter model
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Variance of allele model
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Model distribution

Assuming:
e an approximate normal distribution,
 mean of zero,

2
+ avariance = —— for the allele model,

an

2
 and avariance = kT for the stutter model, then:

an

/
O 2
log| =22 |~ N O,k— for stutter
E E
\ (a-1)n an
4 2
log O, j ~ N (Oc—j for alleles
I I
\ Ean Ean
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Assumption

« Assumption of independence across alleles and
stutter at a locus

- l.e. peak heights in a profile are not correlated
« However, alarger than expected stutter peak is

likely to be associated with a smaller than
expected allelic peak

- If stutter occurs early in PCR this results in increased
stutter height at the detriment to the allele height

 For any given allele if the stutter peak is above
expectation given the LUS we expect the allelic
peak to be below expectation
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Log(O/E) HMW vs LMW Allele
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Log(O/E) Allele vs Stutter
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e NO detectable correlation between stutter
and allele in the biological model
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